Topology

Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don't need to know the proof.

If a statement is marked with [Proof not in the exam], then it was proved in the lecture, but the proof will not be asked in the exam.

If a statement is marked with [Statement not in the exam], then it will not be asked in the exam (both statement and proof).

Lecture 1:

Moral introduction to Topology

Lecture 2:

- 1. Definition: Open subset of \mathbb{R} .
- 2. Examples of open subsets: \mathbb{R} , (a, b), $\mathbb{R}-\{$ finite set $\}$, $\mathbb{R}-\left(\{\frac{1}{n}\}_{n=1}^{\infty}\cup\{0\}\right), \emptyset$.
- 3. A function $f : \mathbb{R} \to \mathbb{R}$ is continuous (with the ε, δ definition) \Leftrightarrow for each open set $O \subseteq \mathbb{R}$ the inverse image f^{-1} is open.
- 4. Definition: topological space, open set, topology, trivial topology, discrete topology.
- 5. The collection of all open subsets of \mathbb{R} is a topology.
- 6. Definition: standard topology on \mathbb{R} .
- 7. Example: other topologies on \mathbb{R} : $\mathcal{T}_1 = \{\mathbb{R} A \mid A \text{ finite }\} \cup \{\emptyset\};$ $\mathcal{T}_2 = \{O \subseteq \mathbb{R} \mid \forall x \in O \exists [a, b) \subseteq O \text{ with } x \in [a, b)\}.$
- 8. Definition: coarser topology, finer topology, closed set.
- 9. Let X be a set and let \mathcal{C} be a family of subsetes of X such that

(a) $\emptyset, X \in \mathcal{C};$

- (b) (finite union) $C_1, \ldots, C_n \in \mathcal{C} \Rightarrow \bigcup_{i=1}^n C_i \in \mathcal{C};$
- (c) (intersection) $\{C_i\}_{i \in I} \subseteq \mathcal{C} \Rightarrow \bigcap_{i \in I} C_i \in \mathcal{C}.$

Then $\{X - C \mid C \in \mathcal{C}\}$ is a topology on X.

Lecture 3:

- 1. Let X be a topological space and $A \subseteq X$. For every $x \in X$ exactly one of the following holds:
 - (a) There exists O open with $x \in O \subseteq A$;
 - (b) There exists O open with $x \in O \subseteq X A$;
 - (c) For all open sets O with $x \in O$, we have $O \cap A \neq \emptyset$ and $O \cap (X A) \neq \emptyset$.
- 2. Definition: interior, boundary and closure of a subset $A \subseteq X$.
- 3. $\operatorname{Int}(A) \subseteq A \subseteq \overline{A}$.
- 4. Examples: $\overline{(a,b)} = [a,b]$, $\operatorname{Int}(\mathbb{Q}) = \emptyset$, $\partial \mathbb{Q} = \mathbb{R}$, when \mathbb{Q} is seen as a subset of \mathbb{R} .
- 5. Let $A \subseteq X$ be a topological space. Then
 - (a) Int(A) is open;
 - (b) \overline{A} is closed;
 - (c) A is open $\Leftrightarrow A = Int(A);$
 - (d) A is closed $\Leftrightarrow A = \overline{A}$.
- 6. Exercise:
 - (a) Int(A) is the maximal open set contained in A;
 - (b) A is the minimal closed set containing A.

Lecture 4:

- 1. Definition: Basis for a topology.
- 2. Remark: A basis \mathcal{B} satisfies:
 - (a) Every $x \in X$ lies in some $B \in \mathcal{B}$.
 - (b) Let $B_1, B_2 \in \mathcal{B}$. If there is $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ such that $B_3 \subseteq B_1 \cap B_2$ and $x \in B_3$.
- 3. If a family of subsets $\mathcal{B} \subseteq \mathcal{P}(X)$ satisfies (a) and (b) as above, then it is a basis of a topology on X.
- 4. Definitions: Product topology on $X \times Y$, metric space, triangle inequality, ball of radius r around x (denoted $B_r(x)$).
- 5. Let (X, d) be a metric space. Then $\mathcal{B} = \{B_r(x) \mid x \in X, r > 0\}$ is a basis for a topology, called *metric topology*.
- 6. Examples of metric spaces: [Proof not in the exam]

(a) X any set,
$$d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

(b) $X = \{f : [0,1] \to \mathbb{R} \mid f \text{ continuous}\}, d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$

(c)
$$X = \{f : [0,1] \to \mathbb{R} \mid f \text{ continuous}\}, d_2(f,g) = \sqrt{\int_0^1 |f(x) - g(x)|^2} dx$$

- 7. Definition: subspace topology.
- 8. Let $A \subseteq X$ be open (resp. closed). Then $B \subseteq A$ is open (resp. closed) in the subspace topology \Leftrightarrow it is open (resp. closed) as a subset of X.
- 9. A function $f: X \to Y$ is continuous \Leftrightarrow for all $C \subseteq Y$ closed, we have that $f^{-1}(C)$ is closed in X.
- 10. Let $f: X \to Y$ be a function.

- (a) Given a basis \mathcal{B} for Y, f is continuous $\Leftrightarrow f^{-1}(B)$ is open for all $B \in \mathcal{B}$.
- (b) $f: X \to Y, g: Y \to Z$ continuous $\Rightarrow g \circ f: X \to Z$ is continuous.
- (c) $f: X \to Y$ continuous, $A \subseteq X$. Then $f_{|A|}$ is continuous with respect to the subspace topology on A.
- (d) Let $f: X \to Y, g: W \to Z$. Then $f \times g$ is continuous $\Leftrightarrow f$ and g are.
- 11. Definition: Homeomorphism.
- 12. Let X be a set of cardinality at least 2. Then the identity map Id: $(X, \mathcal{T}_{\text{discrete}}) \rightarrow (X, \mathcal{T}_{\text{trivial}})$ is continuous but not a homeomorphism.

Lecture 5:

- 1. A topological space X is *disconnected* if one of the following equivalent conditions hold:
 - (a) X is the union of disjoint, non-empty open sets;
 - (b) X is the union of disjoint, non-empty closed sets;
 - (c) There exists $A \subset X$, where $X \neq A \neq \emptyset$, which is open and closed.
- 2. Definition: connected space.
- 3. Examples: $\mathbb{R} \{0\}$ is disconnected, \mathbb{Q} is disconnected, the topology of \mathbb{R} given by the basis $\{[a, b)\}$ is disconnected.
- 4. [a, b] is connected.
- 5. Definition: path connected space.
- 6. If X is path-connected, then it is connected.

7. Let $f: X \to Y$ be a continuous surjective map and suppose that X is (path-)connected. Then Y is (path-)connected.

Lecture 6:

- 1. Definition: cut-point
- 2. The number of cut-points is invariant under homeomorphism.
- 3. Let $Z = \{(x, \sin\left(\frac{1}{x}\right) \mid x > 0\} \cup \{(0, x) \mid x \in [-1, 1]\}$. Then Z is connected but not path-connected. [Proof not in the exam]
- 4. Let $P(x) = \{y \in X \mid \text{ there exists a path from } x \text{ to } y\}$ (called *path-connected component of x*). If $P(x) \cap P(y) \neq \emptyset$, then P(x) = P(y).
- 5. Definition: inverse path, connected/disconnected/path-connected subspace.
- 6. A topological space is the disjoint union of its path-connected components.
- 7. If $A \subseteq X$ is a path-connected subspace, then it is contained in a path connected component of X.
- 8. if $f: X \to Y$ is a continuous function, then $f(P(x)) \subseteq P(f(x))$.
- 9. If $A \subseteq X$ is a connected subspace, then \overline{A} is connected.
- 10. Remark: this is not true with Int(A).
- 11. Let $A \subseteq X$ be closed and open, and $C \subseteq X$ be connected. Then if $A \cap C \neq \emptyset$, then $C \subseteq A$.
- 12. Let $\{C_{\alpha}\}$ be a family of connected subspaces of X. If $C_{\alpha} \cap C_{\beta} \neq \emptyset$ for all α and β , then $\bigcup C_{\alpha}$ is connected.
- 13. Definition: connected component C(x) of a point x.

- 14. C(x) is connected, closed and if $C(x) \cap C(y) \neq \emptyset$, then C(x) = C(y).
- 15. Definition: neighbourhood, locally path connected topological space.
- 16. Suppose that X is locally path connected. Then for each $x \in X$, P(x) = C(x).
- 17. As a corollary we get that if X is locally path connected, then X is connected $\Leftrightarrow X$ is path-connected.

Lecture 7:

- 1. Definitions: totally disconnected space, isolated point, Cantor Set, bounded set.
- 2. Let $C \subseteq \mathbb{R}$ be the Cantor set. Then C is non-empty, totally disconnected, closed, without isolated points.
- 3. Let $X \subseteq \mathbb{R}$ be a non-empty, totally disconnected, closed, bounded subset without isolated points. Then X is homeomorphic to the Cantor set. [Not proved in the lecture]

Lecture 8:

- 1. Definitions: Compact, open cover, subcover.
- 2. Example: \mathbb{R} is not compact.
- 3. Let X be a compact, non empty, topological space, $f: X \to \mathbb{R}$ a continuous function. Then f has a maximum.
- 4. The interval [a, b] is compact in \mathbb{R} .
- 5. Let X a compact set and $Y \subseteq X$ be a closed set. Then Y is compact.

- 6. Let X be a topological space and \mathcal{B} be a basis for the topology. Then X is compact if and only if for every open cover $\{O_{\alpha}\}$ such that $O_{\alpha} \in \mathcal{B}$ for all α , there exists a finite subcover.
- 7. Let $f: X \to Y$ be continuous and surjective, and assume that X is compact. Then Y is compact.
- 8. Let X and Y be compact topological spaces. Then $X \times Y$ is compact.
- 9. A subset X of \mathbb{R}^n is compact if and only if it is closed and bounded.

Lecture 9:

- 1. Want a topology for infinite products $X = \prod_{i \in I} X_i$. First candidate: choose the basis $\mathcal{B} = \{O_1 \times \cdots \times O_n \times \cdots \mid O_i \text{ open in } X_i\}$. However, for $X = \mathbb{R}^{\mathbb{N}}$ the basis \mathcal{B} would make the map $f : \mathbb{R} \to \mathbb{R}^{\mathbb{N}}$ defined as $f(x) = (x, x, x, \dots)$ not continuous.
- 2. Definition: product topology (for arbitrary products).
- 3. Let Z and X_i , for $i \in I$, be topological spaces. For each $i \in I$, let $f_i: Z \to X_i$ be a function. Then the function $f: Z \to \prod_{i \in I} X_i$ defined as $f(z) = (f_1(z), \ldots, f_n(z), \ldots)$ is continuous if and only if each f_i is continuous (the product $\prod_{i \in I} X_i$ is equipped with the product topology).
- 4. Let X_i , for $i \in I$ be topological spaces, and let $X = \prod_{i \in I} X_i$ be equipped with the product topology. Then X is compact if and only if each X_i is compact. [Proof not in the exam]

Lecture 10:

1. Definition:Limit of a sequence, first countable space, neighbourhood basis, Hausdorff space, converging sequence.

- 2. Non-example: Zariski topology.
- 3. Let X be a Hausdorff topological space. Then any sequence has at most one limit.
- 4. Let X be a metric space with the metric topology. Then X is first countable and Hausdorff.
- 5. Let X be a first countable metric space. Then for every subset A of X:
 - (a) $\overline{A} = \{x \mid \exists \{x_n\} \text{ with each } x_n \in A, \text{ such that } x = \lim\{x_n\}\}.$
 - (b) A is closed if and only if the limit of a sequence contained in A is contained in A (in case such a limit exists).
- 6. Let X, Y be topological spaces and assume that X is first countable. Then $f: X \to Y$ is continuous if and only if for every sequence $\{x_n\}$ in X with limit point x, f(x) is the limit of $\{f(x_n)\}$.
- 7. Definition: sequentially compact space, totally bounded space, second countable space.
- 8. Let X be a metric space. Then the following are equivalent:
 - (a) X is compact;
 - (b) X is sequentially compact;
 - (c) X is complete and totally bounded.
- 9. Let X be a first countable topological space that is compact. Then X is sequentially compact. (The proof is part of the statement before)
- 10. Let X be a second countable topological space that is sequentially compact. Then X is compact. (The proof is part of the statement before)

Lecture 11:

- 1. Definition: Lebesgue number, for a subset A of a metric space $X, d(x, A) = \inf_{y \in A} \{ d(x, y) \}.$
- 2. Let X be a compact metric space. Then every open cover has a Lebesgue number.
- 3. For a subset A of a metric space X and a point $x \in X$ it holds
 - (a) $d(x, A) \ge 0$ and $d(x, A) = 0 \iff x \in \overline{A}$.
 - (b) d(x, A) is 1-Lipschitz (hence continuous) in x.
- 4. Definition: uniformly continuous function.
- 5. Let X, Y be compact metric spaces. Then every continuous function $f: X \to Y$ is uniformly continuous.

Lecture 12:

- 1. Definition: Space C(X, Y), equicontinuous family of functions.
- 2. [Proof not in the exam]Let X and Y be compact metric spaces. Then a set $\mathcal{F} \subseteq C(X, Y)$ is compact if and only if it is closed and equicontinuous.
- 3. [Statement not in the exam]Let $f: [0,1] \times \mathbb{R} \to \mathbb{R}$ be a continuous bounded function, and let $t_0 \in \mathbb{R}$. Then the system

$$\begin{cases} y'(x) = f(x, y(x)) \\ y(0) = t_0 \end{cases}$$

has a solution $y: [0,1] \to \mathbb{R}$.

- 4. Definition: dense subset.
- 5. [Statement not in the exam] There exists $f: [0, 1] \to \mathbb{R}$ continuous such that f'(x) does not exist for all $x \in [0, 1]$.

Lecture 13:

- 1. Definition: one-point compactification.
- 2. Let X be a Hausdorff space and C be a compact subspace of X. Then C is closed in X.
- 3. Let X be a Hausdorff space and C be a compact subspace of X. Then for every $x \in X - C$ there are disjoint open sets U and V such that $x \in U$ and $C \subseteq V$.
- 4. Let X be a non-compact Hausdorff space and \widehat{X} be the one-point compactification of X. Then \widehat{X} is compact and X is dense in \widehat{X} .

Lecture 14:

- 1. Example: stereographic projection: $\widehat{\mathbb{R}^n}$ is homeomorphic to S^n [Proof not in the exam]
- 2. Definitions: normal space, regular space.
- 3. Let X be a compact space and Y be a hausdorff space, and let $f: X \to Y$ be a continuous map. Then f is closed (i.e. for each closed set $C \subseteq X$, f(C) is closed in Y).
- 4. [Corollary] A continuous bijection between a compact space and a hausdorff space is a homeomorphism.
- 5. Let X be a non-compact Hausdorff space. Then \widehat{X} is Hausdorff if and only if X is locally compact. [Proof not in the exam]
- 6. Let X a locally compact Hausdorff space, and let $\{U_n\}$ be a family of open dense subsets. Then $\bigcap U_n$ is dense. [Proof not in the exam]

7. Let (X, \mathcal{T}) be a second-countable Hausdorff space. Then there exists a distance on X that induces the topology \mathcal{T} [Proof not in the exam].

Lecture 15:

- 1. Let X be a compact Hausdorff space. Then X is normal (in particular is regular).
- 2. Let X be a metric space. Then X is normal.
- 3. Definition: Quotient topology, quotient space.
- 4. Informal discussion: quotient = gluing.
- 5. Let X be a compact space, Y be a hausdorff space and let $f: X \to Y$ be a continuous surjection. Then a set $U \subseteq Y$ is open in Y if and only if $f^{-1}(U)$ is open in X.

Lecture 16:

- 1. Definition: equivalence relation, equivalence class, quotient by an equivalence relation.
- 2. Let X, Y be topological spaces and let $f: X \to Y$ be a quotient map. Let \sim be the equivalence relation on X defined as $x \sim y$ if f(x) = f(y). Then the map $\overline{f}: X/_{\sim} \to Y$ defined as

$$[x] \mapsto f(x)$$

is well defined and a homeomorphism.

3. Let X, Y be topological spaces and let \sim be an equivalence relation on X. Let $f: X \to Y$ be a continuous map such that whenever $x \sim y$ we have f(x) = f(y). Then the map $\overline{f}: X/_{\sim} \to Y$ defined as $\overline{f}([x])$ is well defined and continuous.

- 4. [Statement not in the exam]Examples: $[0,1], 0 \sim 1$ is homeomorphic to $S^1, X = \mathbb{R} \times \{0,1\}, (x,0) \sim (x,1)$ if $x \neq 0$ (line with two zeroes). Quotient is not hausdorff, contains non-closed compact subsets, exists compact subsets whose intersection is not compact.
- 5. Let X be a topological space, let A be a dense subset of X and let Y be a Hausdorff space. Suppose that there are continuous functions $f_1, f_2: X \to Y$ such that for every $a \in A$ we have $f_1(a) = f_2(a)$. Then $f_1 = f_2$.
- 6. [Statement not in the exam]Let X be a Hausdorff, path connected topological space. Then X is *arc connected* (i.e. any two points can be joined by an injective arc).
- 7. Examples: Let $Q = [0,1] \times [0,1]$. Then the cylinder is given by $(0,1) \sim (1,t)$, for all $t \in [0,1]$. The Möbius strip is given by $(0,t) \sim (1,1-t)$. The torus is given by $(0,t) \sim (1,t)$ and $(s,0) \sim (s,1)$. The torus is homeomorphic to $S^1 \times S^1$.

Lecture 17:

- 1. The sphere S^2 can be described as a quotient in several ways. Presented the following:
 - (a) $X = D^2 \times \{a, b\}$, where D^2 is the unit disk. Then $S^2 \cong X/_{\sim}$, where $(v, a) \sim (v_b)$ for each $v \in S^1$ (note that S^1 is here boundary of D^2).
 - (b) $X = D^2$ and $S^2 \cong X/_{\sim}$ where $(x, y) \sim (x, -y)$ for each $(x, y) \in S^1$.
 - (c) $X = D^2$ and $S^2 \cong X/S^1$.
- 2. Definition of Klein bottle, projective plane.
- 3. The projective plane is homeomorphic to $S^2/_{\sim}$, where $x \sim -x$ for all x.

Lecture 18:

- 1. Let X be a normal topological space and $q: X \to Y$ be a closed quotient map. Then Y is normal. [Proof not in the exam]
- 2. Let X be a compact Hausdorff space, let ~ be an equivalence relation on X and assume that $R = \{(x, y) \mid x \sim y\} \subseteq X \times X$ is closed. Then the projection map $q: X \to X/_{\sim}$ is closed. [Proof not in the exam]
- 3. [Statement not in the exam]There is an equivalence relation on the Cantor set C such that $C/_{\sim}$ is homeomorphic to [0, 1].
- 4. [Statement not in the exam]Let X be a compact metric space. Then X can be realized as a quotient of the Cantor set.
- 5. [Statement not in the exam]Definition of Sierpinsky carpet.
- 6. [Statement not in the exam]There is an equivalence relation on the Sierpinsky carpet S such that $S/_2$ is homeomorphic to the sphere S^2 .

Lecture 19:

- 1. What is a topological invariant;
- 2. Definitions: loop, homotopy (of paths), linear homotopy;
- 3. Being homotopic is an equivalence relation.

Lecture 20:

- 1. Definitions: null-homotopic loop, fundamental group,
- 2. The fundamental group is well defined. Its trivial element is the constant loop and the inverse of a class $[\alpha]$ is the class $[\alpha^{-1}]$, where $[\alpha^{-1}]$ is the path obtained reversing the orientation of α .

- 3. Let X, Y be topological spaces. Assume that $X = A \cup B$, with A, B closed, and let $f: X \to Y$. If $f_{|A}$ and $f_{|B}$ are continuous, so it is f. This is still true if instead of considering 2 closed sets, we consider finitely many.
- 4. Remark: The above is still true if both A and B are open or, more general, if X is the union of arbitrarily many open. It is not true for general A and B.
- 5. Let X be a topological space, and let γ be a path between two points x_0 and x_1 . Then there exists an isomorphism $\beta_{\gamma} \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$, where $\beta_{\gamma}([\alpha])$ is defined as $[\gamma^{-1} * \alpha * \gamma]$.
- 6. Corollary: if X is path connected, then for every pair x_0, x_1 we have that $\pi_1(X, x_0) \cong \pi_1(X, x_1)$. In this case we can denote $\pi_1(X, x_0)$ simply as $\pi_1(X)$.
- 7. Remark: the isomorphism β_{γ} depends on the choice of γ .
- 8. [Peano Curve] There exists a continuous surjective map $[0, 1] \rightarrow [0, 1] \times [0, 1]$.[Statement not in the exam]

Lecture 21:

- 1. Let X be a topological space and suppose that X can be written as $X = \bigcup U_{\alpha}$, where each U_{α} is a path-connected open subset of X. Suppose, moreover, that there exists x_0 such that $x_0 \in U_{\alpha}$, for every α and that $U_{\alpha} \cap U_{\beta}$ is path-connected for every α and β . Then every loop at x_0 is homotopic to a concatenations of loops such that every loop in the concatenation is contained is some U_{α} .
- 2. As a corollary, we obtain that $\pi_1(S^n) = \{1\}$, for n > 1.
- 3. [Proof next lecture] $\pi_1(S^1) \cong \mathbb{Z}$.

4. [Brouwer fixed point Theorem] Let $f: D^2 \to D^2$ be any continuous map. Then f has a fixed point, that is, there exists $x \in D^2$ such that f(x) = x.[Statement not in the exam]

Lecture 22:

- 1. The fundamental group of the circle S^1 is isomorphic to the integers, and it is generated by the class of the loop $w(t) = (\cos(2\pi t), \sin(2\pi t))$.
- 2. Definition: Covering, evenly covered neighbourhood, covering space, covering map, lift(ing) of a map f,
- 3. Example: the quotient map $S^2 \to \mathbb{RP}^2$ is a covering.
- 4. Let $p: \widehat{X} \to X$ be a cover, let $\widehat{x}_0 \in \widehat{X}$ be a point, and let $x_0 = p(\widehat{x}_0)$. Then we have:
 - (a) [Unique lift of paths] For every path $f: [0,1] \to X$ with $f(0) = x_0$, there exists a unique lift \widehat{f} with $f(\widehat{x}_0) = x_0$.
 - (b) [Unique lift of homotopies] For every homotopy $F: [0, 1] \times [0, 1] \to X$ with $F(0, 0) = x_0$, there exists a unique homotopy $\widehat{F}: [0, 1] \times [0, 1] \to \widehat{X}$ with $\widehat{F}(0, 0) = \widehat{x_0}$.
- 5. Let $p: \widehat{X} \to X$ be a cover, assume that \widehat{X} is path connected, and let $\widehat{x}_0 \in \widehat{X}$ and $x_0 = p(\widehat{x}_0)$. Let $\sigma: \pi_1(X, x_0) \to p^{-1}(x_0)$ be the map defined as $\sigma([\gamma]) = \widehat{\gamma}(1)$, where $\widehat{\gamma}$ is the unique lift of γ such that $\widehat{\gamma}(0) = \widehat{x}_0$. Then σ is well-defined and surjective. Moreover, if $\pi_1(\widehat{X}, \widehat{x}_0) = \{1\}$, it is also injective.
- 6. As a corollary we obtain $\pi_1(\mathbb{RP}^2) \cong \mathbb{Z}/2\mathbb{Z}$.

Lecture 23:

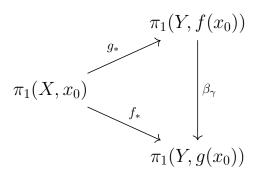
1. [Proof as exercise] Let X, Y be topological spaces and let $f: X \to Y$ be a continuous map. Assume that $f(x_0) = y_0$. Then the

map $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ defined as $f_*([\gamma]) = [f \circ \gamma]$ is well-defined and a group homeomorphism.

- 2. As a corollary we obtain that if X and Y are path-connected and homeomorphic, then $\pi_1(X) \cong \pi_1(Y)$.
- 3. Definition: homotopy between continuous maps (from general topological spaces), homotopy equivalence between topological spaces.
- 4. Being homotopic equivalent is an equivalence relation between topological spaces.
- 5. Examples: \mathbb{R}^n is homotopic equivalent to a point, the Möbius strip is homotopic equivalent to S^1 .

Lecture 24:

- 1. \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for any n > 2. (Note that we already know that \mathbb{R}^2 is not homeomorphic to \mathbb{R}).
- 2. We have: $\mathbb{R}^k \{0\} \simeq S^{k-1}$, where \simeq denotes homotopy equivalence.
- 3. Let $f, g: X \to Y$ be two homotopic maps, and let $x_0 \in X$. Then there is a path γ in Y from $f(x_0)$ to $g(x_0)$ such that $\beta_{\gamma} \circ g_* = f_*$ (recall that $\beta_{\gamma}([\alpha]) = [\gamma * \alpha * \gamma^{-1}]$). This amounts to say that there exists γ such that the following diagram commutes.



4. As a corollary we obtain that if $f: X \to Y$ is a homotopy equivalence and $x_0 \in X$, then $f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ is an isomorphism.

Lecture 25:

- 1. Definition: free group, reduced word, free product of groups.
- 2. [Proof not in the exam] The free product $*G_a$, is a group, and each G_a is (naturally identified with) a subgroup.
- 3. Definition: free group.
- 4. [Proof not in the exam]Let $\{G_a\}$ be a family of groups, and H be a group. For each a, let $\psi_a \colon G_a \to H$ be a homomorphism. Then there exists a unique map $\psi \colon *G_a \to H$ such that $\psi_{|G_a} = \psi_a$.
- 5. [Proof not in the exam]Let G be a group and $A \subseteq G$. Then there exist a unique minimal normal subgroup (with respect to inclusion) containing A, denoted by $\langle \langle A \rangle \rangle$. Moreover

$$\langle\langle A \rangle\rangle = \left\{\prod_{i=1}^{n} g_i a_i^{\pm} g_i^{-1} \mid g_i \in G, a_i \in A\right\}.$$

- 6. Definition: presentation of a group (denoted $\langle S \mid R \rangle$), relators.
- 7. [Proof not in the exam]Let $G = \langle S | R \rangle$, $N = \langle \langle R \rangle \rangle \triangleleft F_S$ and let $\phi \colon F_S \to H$ be a homomorphism. If for all $r \in R$ we have that f(r) = Id, then $\overline{\phi} \colon G \to H$ given by $\overline{\phi}(gN) = \phi(g)$ is a well-defined homomorphism.
- 8. [Van Kampen Theorem] [Proof not in the exam]Let X be a topological space, $A, B \subseteq X$ be open path-connected, and let

 $x_0 \in A \cap B$. Let

$$i_A \colon A \to X$$
$$i_B \colon B \to X$$
$$i_{A,B} \colon A \cap B \to B$$
$$i_{B,A} \colon A \cap B \to A$$

be the inclusions. Let

$$\phi = \phi(\{(i_A)_*, (i_B)_*\}) \colon \pi_1(A, x_0) * \pi_1(B, x_0) \to \pi_1(X, x_0).$$

Then ϕ is surjective and the Kernel of ϕ is

$$\langle \langle \{ (i_{A,B})_*(g) \cdot (i_{B,A})_*(g^{-1}) \mid g \in \pi_1(A \cap B, x_0) \} \rangle \rangle.$$

- 9. [Corollary] If A and B are simply connected, then so it is X.
- 10. $\pi_1(S^2) \cong \{1\}.$
- 11. Definition: Rose R_n .
- 12. $\pi_1(R_n) \cong F_n$, where F_n is the free group on n generators.

Lecture 26:

[Statement not in the exam] Proof of Van Kampen Theorem

Lecture 27:

[Statement not in the exam] Covering Theory.