
Topology Summary

Note to the reader. If a statement is marked with [Not proved
in the lecture], then the statement was stated but not proved in the
lecture. Of course, you don’t need to know the proof.

If a statement is marked with [Proof not in the exam], then it was
proved in the lecture, but the proof will not be asked in the exam.

If a statement is marked with [Statement not in the exam], then
it will not be asked in the exam (both statement and proof).

Lecture 1:

Moral introduction to Topology

Lecture 2:

1. Definition: Open subset of R.

2. Examples of open subsets: R, (a, b),R−{ finite set },R−
(
{ 1n}

∞
n=1 ∪ {0}

)
, ∅.

3. A function f : R→ R is continuous (with the ε, δ definition)⇔
for each open set O ⊆ R the inverse image f−1 is open.

4. Definition: topological space, open set, topology, trivial topol-
ogy, discrete topology.

5. The collection of all open subsets of R is a topology.

6. Definition: standard topology on R.

7. Example: other topologies on R: T1 = {R−A | A finite }∪{∅};
T2 = {O ⊆ R | ∀x ∈ O∃[a, b) ⊆ O with x ∈ [a, b)}.

8. Definition: coarser topology, finer topology, closed set.

9. Let X be a set and let C be a family of subsetes of X such that

(a) ∅, X ∈ C;
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(b) (finite union) C1, . . . , Cn ∈ C ⇒
⋃n
i=1Ci ∈ C;

(c) (intersection) {Ci}i∈I ⊆ C ⇒
⋂
i∈I Ci ∈ C.

Then {X − C | C ∈ C} is a topology on X.

Lecture 3:

1. Let X be a topological space and A ⊆ X. For every x ∈ X
exactly one of the following holds:

(a) There exists O open with x ∈ O ⊆ A;

(b) There exists O open with x ∈ O ⊆ X − A;

(c) For all open sets O with x ∈ O, we have O ∩ A 6= ∅ and
O ∩ (X − A) 6= ∅.

2. Definition: interior, boundary and closure of a subset A ⊆ X.

3. Int(A) ⊆ A ⊆ A.

4. Examples: (a, b) = [a, b], Int(Q) = ∅, ∂Q = R, when Q is seen
as a subset of R.

5. Let A ⊆ X be a topological space. Then

(a) Int(A) is open;

(b) A is closed;

(c) A is open ⇔ A = Int(A);

(d) A is closed ⇔ A = A.

6. Exercise:

(a) Int(A) is the maximal open set contained in A;

(b) A is the minimal closed set containing A.
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Lecture 4:

1. Definition: Basis for a topology.

2. Remark: A basis B satisfies:

(a) Every x ∈ X lies in some B ∈ B.

(b) Let B1, B2 ∈ B. If there is x ∈ B1 ∩ B2, then there exists
B3 ∈ B such that B3 ⊆ B1 ∩B2 and x ∈ B3.

3. If a family of subsets B ⊆ P(X) satisfies (a) and (b) as above,
then it is a basis of a topology on X.

4. Definitions: Product topology on X × Y , metric space, triangle
inequality, ball of radius r around x (denoted Br(x)).

5. Let (X, d) be a metric space. Then B = {Br(x) | x ∈ X, r > 0}
is a basis for a topology, called metric topology.

6. Examples of metric spaces: [Proof not in the exam]

(a) X any set, d(x, y) =

{
0 x = y,

1 x 6= y.

(b) X = {f : [0, 1] → R | f continuous}, d1(f, g) =
∫ 1

0 |f(x) −
g(x)|dx.

(c) X = {f : [0, 1]→ R | f continuous}, d2(f, g) =
√∫ 1

0 |f(x)− g(x)|2dx.

7. Definition: subspace topology.

8. Let A ⊆ X be open (resp. closed). Then B ⊆ A is open (resp.
closed) in the subspace topology ⇔ it is open (resp. closed) as
a subset of X.

9. A function f : X → Y is continuous⇔ for all C ⊆ Y closed, we
have that f−1(C) is closed in X.

10. Let f : X → Y be a function.
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(a) Given a basis B for Y , f is continuous ⇔ f−1(B) is open
for all B ∈ B.

(b) f : X → Y , g : Y → Z continuous ⇒ g ◦ f : X → Z is
continuous.

(c) f : X → Y continuous, A ⊆ X. Then f|A is continuous with
respect to the subspace topology on A.

(d) Let f : X → Y , g : W → Z. Then f × g is continuous ⇔ f
and g are.

11. Definition: Homeomorphism.

12. Let X be a set of cardinality at least 2. Then the identity map
Id: (X, Tdiscrete) → (X, Ttrivial) is continuous but not a homeo-
morphism.

Lecture 5:

1. A topological space X is disconnected if one of the following
equivalent conditions hold:

(a) X is the union of disjoint, non-empty open sets;

(b) X is the union of disjoint, non-empty closed sets;

(c) There exists A ⊂ X, where X 6= A 6= ∅, which is open and
closed.

2. Definition: connected space.

3. Examples: R−{0} is disconnected, Q is disconnected, the topol-
ogy of R given by the basis {[a, b)} is disconnected.

4. [a, b] is connected.

5. Definition: path connected space.

6. If X is path-connected, then it is connected.
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7. Let f : X → Y be a continuous surjective map and suppose that
X is (path-)connected. Then Y is (path-)connected.

Lecture 6:

1. Definition: cut-point

2. The number of cut-points is invariant under homeomorphism.

3. Let Z = {(x, sin
(
1
x

)
| x > 0} ∪ {(0, x) | x ∈ [−1, 1]}. Then Z is

connected but not path-connected. [Proof not in the exam]

4. Let P (x) = {y ∈ X | there exists a path from x to y} (called
path-connected component of x). If P (x) ∩ P (y) 6= ∅, then
P (x) = P (y).

5. Definition: inverse path, connected/disconnected/path-connected
subspace.

6. A topological space is the disjoint union of its path-connected
components.

7. If A ⊆ X is a path-connected subspace, then it is contained in
a path connected component of X.

8. if f : X → Y is a continuous function , then f(P (x)) ⊆ P (f(x)).

9. If A ⊆ X is a connected subspace, then A is connected.

10. Remark: this is not true with Int(A).

11. Let A ⊆ X be closed and open, and C ⊆ X be connected. Then
if A ∩ C 6= ∅, then C ⊆ A.

12. Let {Cα} be a family of connected subspaces ofX. If Cα∩Cβ 6= ∅
for all α and β, then

⋃
Cα is connected.

13. Definition: connected component C(x) of a point x.
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14. C(x) is connected, closed and if C(x) ∩ C(y) 6= ∅, then C(x) =
C(y).

15. Definition: neighbourhood, locally path connected topological
space.

16. Suppose that X is locally path connected. Then for each x ∈ X,
P (x) = C(x).

17. As a corollary we get that if X is locally path connected, then
X is connected ⇔ X is path-connected.

Lecture 7:

1. Definitions: totally disconnected space, isolated point, Cantor
Set, bounded set.

2. Let C ⊆ R be the Cantor set. Then C is non-empty, totally
disconnected, closed, without isolated points.

3. LetX ⊆ R be a non-empty, totally disconnected, closed, bounded
subset without isolated points. Then X is homeomorphic to the
Cantor set. [Not proved in the lecture]

Lecture 8:

1. Definitions: Compact, open cover, subcover.

2. Example: R is not compact.

3. Let X be a compact, non empty, topological space, f : X → R
a continuous function. Then f has a maximum.

4. The interval [a, b] is compact in R.

5. Let X a compact set and Y ⊆ X be a closed set. Then Y is
compact.
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6. Let X be a topological space and B be a basis for the topology.
Then X is compact if and only if for every open cover {Oα}
such that Oα ∈ B for all α, there exists a finite subcover.

7. Let f : X → Y be continuous and surjective, and assume that
X is compact. Then Y is compact.

8. Let X and Y be compact topological spaces. Then X × Y is
compact.

9. A subset X of Rn is compact if and only if it is closed and
bounded.

Lecture 9:

1. Want a topology for infinite products X =
∏

i∈I Xi. First candi-
date: choose the basis B = {O1×· · ·×On×· · · | Oi open in Xi}.
However, for X = RN the basis B would make the map f : R→
RN defined as f(x) = (x, x, x, . . . ) not continuous.

2. Definition: product topology (for arbitrary products).

3. Let Z and Xi, for i ∈ I, be topological spaces. For each i ∈ I, let
fi : Z → Xi be a function. Then the function f : Z →

∏
i∈I Xi

defined as f(z) = (f1(z), . . . , fn(z), . . . ) is continuous if and only
if each fi is continuous (the product

∏
i∈I Xi is equipped with

the product topology).

4. Let Xi, for i ∈ I be topological spaces, and let X =
∏

i∈I Xi be
equipped with the product topology. Then X is compact if and
only if each Xi is compact.[Proof not in the exam]

Lecture 10:

1. Definition:Limit of a sequence, first countable space, neighbour-
hood basis, Hausdorff space, converging sequence.
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2. Non-example: Zariski topology.

3. Let X be a Hausdorff topological space. Then any sequence has
at most one limit.

4. Let X be a metric space with the metric topology. Then X is
first countable and Hausdorff.

5. Let X be a first countable metric space. Then for every subset
A of X:

(a) A = {x | ∃{xn} with each xn ∈ A, such that x = lim{xn}}.
(b) A is closed if and only if the limit of a sequence contained

in A is contained in A (in case such a limit exists).

6. Let X, Y be topological spaces and assume that X is first count-
able. Then f : X → Y is continuous if and only if for every
sequence {xn} in X with limit point x, f(x) is the limit of
{f(xn)}.

7. Definition: sequentially compact space, totally bounded space,
second countable space.

8. Let X be a metric space. Then the following are equivalent:

(a) X is compact;

(b) X is sequentially compact;

(c) X is complete and totally bounded.

9. Let X be a first countable topological space that is compact.
Then X is sequentially compact. (The proof is part of the state-
ment before)

10. Let X be a second countable topological space that is sequen-
tially compact. Then X is compact. (The proof is part of the
statement before)
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Lecture 11:

1. Definition: Lebesgue number, for a subset A of a metric space
X, d(x,A) = infy∈A{d(x, y)}.

2. Let X be a compact metric space. Then every open cover has
a Lebesgue number.

3. For a subset A of a metric space X and a point x ∈ X it holds

(a) d(x,A) ≥ 0 and d(x,A) = 0⇐⇒ x ∈ A.

(b) d(x,A) is 1-Lipschitz (hence continuous) in x.

4. Definition: uniformly continuous function.

5. Let X, Y be compact metric spaces. Then every continuous
function f : X → Y is uniformly continuous.

Lecture 12:

1. Definition: Space C(X, Y ), equicontinuous family of functions.

2. [Proof not in the exam]Let X and Y be compact metric spaces.
Then a set F ⊆ C(X, Y ) is compact if and only if it is closed
and equicontinuous.

3. [Statement not in the exam]Let f : [0, 1] × R → R be a contin-
uous bounded function, and let t0 ∈ R. Then the system{

y′(x) = f(x, y(x))

y(0) = t0

has a solution y : [0, 1]→ R.

4. Definition: dense subset.

5. [Statement not in the exam]There exists f : [0, 1]→ R continu-
ous such that f ′(x) does not exist for all x ∈ [0, 1].
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Lecture 13:

1. Definition: one-point compactification.

2. Let X be a Hausdorff space and C be a compact subspace of
X. Then C is closed in X.

3. Let X be a Hausdorff space and C be a compact subspace of X.
Then for every x ∈ X −C there are disjoint open sets U and V
such that x ∈ U and C ⊆ V .

4. LetX be a non-compact Hausdorff space and X̂ be the one-point
compactification of X. Then X̂ is compact and X is dense in
X̂.

Lecture 14:

1. Example: stereographic projection: R̂n is homeomorphic to Sn

[Proof not in the exam]

2. Definitions: normal space, regular space.

3. Let X be a compact space and Y be a hausdorff space, and let
f : X → Y be a continuous map. Then f is closed (i.e. for each
closed set C ⊆ X, f(C) is closed in Y ).

4. [Corollary] A continuous bijection between a compact space and
a hausdorff space is a homeomorphism.

5. Let X be a non-compact Hausdorff space. Then X̂ is Hausdorff
if and only if X is locally compact. [Proof not in the exam]

6. Let X a locally compact Hausdorff space, and let {Un} be a
family of open dense subsets. Then

⋂
Un is dense. [Proof not

in the exam]
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7. Let (X, T ) be a second-countable Hausdorff space. Then there
exists a distance on X that induces the topology T [Proof not
in the exam].

Lecture 15:

1. Let X be a compact Hausdorff space. Then X is normal (in
particular is regular).

2. Let X be a metric space. Then X is normal.

3. Definition: Quotient topology, quotient space.

4. Informal discussion: quotient = gluing.

5. Let X be a compact space, Y be a hausdorff space and let
f : X → Y be a continuous surjection. Then a set U ⊆ Y is
open in Y if and only if f−1(U) is open in X.

Lecture 16:

1. Definition: equivalence relation, equivalence class, quotient by
an equivalence relation.

2. Let X, Y be topological spaces and let f : X → Y be a quotient
map. Let ∼ be the equivalence relation on X defined as x ∼ y

if f(x) = f(y). Then the map f : X/∼ → Y defined as

[x] 7→ f(x)

is well defined and a homeomorphism.

3. Let X, Y be topological spaces and let ∼ be an equivalence
relation on X. Let f : X → Y be a continuous map such that
whenever x ∼ y we have f(x) = f(y). Then the map f : X/∼ →
Y defined as f([x]) is well defined and continuous.
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4. [Statement not in the exam]Examples: [0, 1], 0 ∼ 1 is homeo-
morphic to S1, X = R × {0, 1}, (x, 0) ∼ (x, 1) if x 6= 0 (line
with two zeroes). Quotient is not hausdorff, contains non-closed
compact subsets, exists compact subsets whose intersection is
not compact.

5. Let X be a topological space, let A be a dense subset of X and
let Y be a Hausdorff space. Suppose that there are continuous
functions f1, f2 : X → Y such that for every a ∈ A we have
f1(a) = f2(a). Then f1 = f2.

6. [Statement not in the exam]Let X be a Hausdorff, path con-
nected topological space. Then X is arc connected (i.e. any two
points can be joined by an injective arc).

7. Examples: Let Q = [0, 1] × [0, 1]. Then the cylinder is given
by (0, 1) ∼ (1, t), for all t ∈ [0, 1]. The Möbius strip is given
by (0, t) ∼ (1, 1 − t). The torus is given by (0, t) ∼ (1, t) and
(s, 0) ∼ (s, 1). The torus is homeomorphic to S1 × S1.

Lecture 17:

1. The sphere S2 can be described as a quotient in several ways.
Presented the following:

(a) X = D2×{a, b}, where D2 is the unit disk. Then S2 ∼= X/∼,
where (v, a) ∼ (vb) for each v ∈ S1 (note that S1 is hte
boundary of D2).

(b) X = D2 and S2 ∼= X/∼ where (x, y) ∼ (x,−y) for each
(x, y) ∈ S1.

(c) X = D2 and S2 ∼= X/S1.

2. Definition of Klein bottle, projective plane.

3. The projective plane is homeomorphic to S2/∼, where x ∼ −x
for all x.
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Lecture 18:

1. Let X be a normal topological space and q : X → Y be a closed
quotient map. Then Y is normal.[Proof not in the exam]

2. Let X be a compact Hausdorff space, let ∼ be an equivalence
relation on X and assume that R = {(x, y) | x ∼ y} ⊆ X×X is
closed. Then the projection map q : X → X/∼ is closed. [Proof
not in the exam]

3. [Statement not in the exam]There is an equivalence relation on
the Cantor set C such that C/∼ is homeomorphic to [0, 1].

4. [Statement not in the exam]Let X be a compact metric space.
Then X can be realized as a quotient of the Cantor set.

5. [Statement not in the exam]Definition of Sierpinsky carpet.

6. [Statement not in the exam]There is an equivalence relation on
the Sierpinsky carpet S such that S/2 is homeomorphic to the
sphere S2.

Lecture 19:

1. What is a topological invariant;

2. Definitions: loop, homotopy (of paths), linear homotopy;

3. Being homotopic is an equivalence relation.

Lecture 20:

1. Definitions: null-homotopic loop, fundamental group,

2. The fundamental group is well defined. Its trivial element is the
constant loop and the inverse of a class [α] is the class [α−1],
where [α−1] is the path obtained reversing the orientation of α.
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3. Let X, Y be topological spaces. Assume that X = A ∪ B, with
A,B closed, and let f : X → Y . If f|A and f|B are continuous,
so it is f . This is still true if instead of considering 2 closed sets,
we consider finitely many.

4. Remark: The above is still true if both A and B are open or,
more general, if X is the union of arbitrarily many open. It is
not true for general A and B.

5. Let X be a topological space, and let γ be a path between two
points x0 and x1. Then there exists an isomorphism βγ : π1(X, x0)→
π1(X, x1), where βγ([α]) is defined as [γ−1 ∗ α ∗ γ].

6. Corollary: if X is path connected, then for every pair x0, x1 we
have that π1(X, x0) ∼= π1(X, x1). In this case we can denote
π1(X, x0) simply as π1(X).

7. Remark: the isomorphism βγ depends on the choice of γ.

8. [Peano Curve] There exists a continuous surjective map [0, 1]→
[0, 1]× [0, 1].[Statement not in the exam]

Lecture 21:

1. Let X be a topological space and suppose that X can be written
as X =

⋃
Uα, where each Uα is a path-connected open subset of

X. Suppose, moreover, that there exists x0 such that x0 ∈ Uα,
for every α and that Uα ∩Uβ is path-connected for every α and
β. Then every loop at x0 is homotopic to a concatenations of
loops such that every loop in the concatenation is contained is
some Uα.

2. As a corollary, we obtain that π1(S
n) = {1}, for n > 1.

3. [Proof next lecture] π1(S
1) ∼= Z.
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4. [Brouwer fixed point Theorem] Let f : D2 → D2 be any contin-
uous map. Then f has a fixed point, that is, there exists x ∈ D2

such that f(x) = x.[Statement not in the exam]

Lecture 22:

1. The fundamental group of the circle S1 is isomorphic to the
integers, and it is generated by the class of the loop w(t) =
(cos(2πt), sin(2πt)).

2. Definition: Covering, evenly covered neighbourhood, covering
space, covering map, lift(ing) of a map f ,

3. Example: the quotient map S2 → RP2 is a covering.

4. Let p : X̂ → X be a cover, let x̂0 ∈ X̂ be a point, and let
x0 = p(x̂0). Then we have:

(a) [Unique lift of paths] For every path f : [0, 1] → X with
f(0) = x0, there exists a unique lift f̂ with f(x̂0) = x0.

(b) [Unique lift of homotopies] For every homotopy F : [0, 1]×
[0, 1] → X with F (0, 0) = x0, there exists a unique homo-
topy F̂ : [0, 1]× [0, 1]→ X̂ with F̂ (0, 0) = x̂0.

5. Let p : X̂ → X be a cover, assume that X̂ is path connected,
and let x̂0 ∈ X̂ and x0 = p(x̂0). Let σ : π1(X, x0) → p−1(x0) be
the map defined as σ([γ]) = γ̂(1), where γ̂ is the unique lift of
γ such that γ̂(0) = x̂0. Then σ is well-defined and surjective.
Moreover, if π1(X̂, x̂0) = {1}, it is also injective.

6. As a corollary we obtain π1(RP2) ∼= Z/2Z.

Lecture 23:

1. [Proof as exercise] LetX, Y be topological spaces and let f : X →
Y be a continuous map. Assume that f(x0) = y0. Then the
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map f∗ : π1(X, x0) → π1(Y, y0) defined as f∗([γ]) = [f ◦ γ] is
well-defined and a group homeomorphism.

2. As a corollary we obtain that if X and Y are path-connected
and homeomorphic, then π1(X) ∼= π1(Y ).

3. Definition: homotopy between continuous maps (from general
topological spaces), homotopy equivalence between topological
spaces.

4. Being homotopic equivalent is an equivalence relation between
topological spaces.

5. Examples: Rn is homotopic equivalent to a point, the Möbius
strip is homotopic equivalent to S1.

Lecture 24:

1. R2 is not homeomorphic to Rn for any n > 2. (Note that we
already know that R2 is not homeomorphic to R).

2. We have: Rk −{0} ' Sk−1, where ' denotes homotopy equiva-
lence.

3. Let f, g : X → Y be two homotopic maps, and let x0 ∈ X. Then
there is a path γ in Y from f(x0) to g(x0) such that βγ ◦ g∗ = f∗
(recall that βγ([α]) = [γ ∗ α ∗ γ−1]). This amounts to say that
there exists γ such that the following diagram commutes.

π1(Y, f(x0))

π1(X, x0)

π1(Y, g(x0))

βγ

g∗

f∗
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4. As a corollary we obtain that if f : X → Y is a homotopy equiv-
alence and x0 ∈ X, then f∗ : π1(X, x0) → π1(Y, f(x0)) is an
isomorphism.

Lecture 25:

1. Definition: free group, reduced word, free product of groups.

2. [Proof not in the exam]The free product ∗Ga, is a group, and
each Ga is (naturally identified with) a subgroup.

3. Definition: free group.

4. [Proof not in the exam]Let {Ga} be a family of groups, and H be
a group. For each a, let ψa : Ga → H be a homomorphism. Then
there exists a unique map ψ : ∗Ga → H such that ψ|Ga = ψa.

5. [Proof not in the exam]Let G be a group and A ⊆ G. Then
there exist a unique minimal normal subgroup (with respect to
inclusion) containing A, denoted by 〈〈A〉〉. Moreover

〈〈A〉〉 =

{
n∏
i=1

gia
±
i g
−1
i | gi ∈ G, ai ∈ A

}
.

6. Definition: presentation of a group (denoted 〈S | R〉), relators.

7. [Proof not in the exam]Let G = 〈S | R〉, N = 〈〈R〉〉 / FS and
let φ : FS → H be a homomorphism. If for all r ∈ R we have
that f(r) = Id, then φ : G → H given by φ(gN) = φ(g) is a
well-defined homomorphism.

8. [Van Kampen Theorem] [Proof not in the exam]Let X be a
topological space, A,B ⊆ X be open path-connected, and let
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x0 ∈ A ∩B. Let

iA : A→ X

iB : B → X

iA,B : A ∩B → B

iB,A : A ∩B → A

be the inclusions. Let

φ = φ({(iA)∗, (iB)∗}) : π1(A, x0) ∗ π1(B, x0)→ π1(X, x0).

Then φ is surjective and the Kernel of φ is

〈〈
{

(iA,B)∗(g) · (iB,A)∗(g
−1) | g ∈ π1(A ∩B, x0)

}
〉〉.

9. [Corollary] If A and B are simply connected, then so it is X.

10. π1(S
2) ∼= {1}.

11. Definition: Rose Rn.

12. π1(Rn) ∼= Fn, where Fn is the free group on n generators.

Lecture 26:

[Statement not in the exam] Proof of Van Kampen Theorem

Lecture 27:

[Statement not in the exam] Covering Theory.
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