Topology Summary

Note to the reader. If a statement is marked with [Not proved
in the lecture], then the statement was stated but not proved in the
lecture. Of course, you don’t need to know the proof.

If a statement is marked with [Proof not in the exam]|, then it was
proved in the lecture, but the proof will not be asked in the exam.

If a statement is marked with [Statement not in the exam], then
it will not be asked in the exam (both statement and proof).

Lecture 1:

Moral introduction to Topology

Lecture 2:

1. Definition: Open subset of R.
2. Examples of open subsets: R, (a,b), R—{ finite set }, R—({2}>>, U {0}),0.

3. A function f: R — R is continuous (with the ¢, ¢ definition) <
for each open set O C R the inverse image f~! is open.

4. Definition: topological space, open set, topology, trivial topol-
ogy, discrete topology.

5. The collection of all open subsets of R is a topology.
6. Definition: standard topology on R.

7. Example: other topologies on R: 71 = {R— A | A finite }U{0};
To ={O CR|Vx € OF[a,b) C O with x € [a,b)}.

8. Definition: coarser topology, finer topology, closed set.
9. Let X be a set and let C be a family of subsetes of X such that
(a) 0, X € C;



(b) (finite union) Cy,...,C, € C = Ui, C; € C;
(c) (intersection) {C;}icr CC = (), Ci € C.

Then {X — C' | C € C} is a topology on X.

Lecture 3:

1. Let X be a topological space and A C X. For every x € X
exactly one of the following holds:

(a) There exists O open with x € O C A;
(b) There exists O open with z € O C X — A;

(¢) For all open sets O with z € O, we have ON A # () and
ON(X —A)#0.

2. Definition: interior, boundary and closure of a subset A C X.
3. Int(A4) C AC A
4. Examples: (a,b) = [a,b], Int(Q) = 0,0Q = R, when Q is seen

as a subset of R.

5. Let A C X be a topological space. Then

(a) Int(A) is open;
(b) A is closed;

(c) Ais open & A = Int(A);
(d) Ais closed < A = A,

6. Exercise:

(a) Int(A) is the maximal open set contained in A;

(b) A is the minimal closed set containing A.



Lecture 4:

10.

. Definition: Basis for a topology.

Remark: A basis B satisfies:

(a) Every x € X lies in some B € B.
(b) Let By, By € B. If there is x € By N By, then there exists
Bs € B such that B3 C By N By and = € Bs.

If a family of subsets B C P(X) satisfies (a) and (b) as above,
then it is a basis of a topology on X.

Definitions: Product topology on X X Y, metric space, triangle
inequality, ball of radius r around z (denoted B,(z)).

Let (X, d) be a metric space. Then B ={B,(z) |z € X,r > 0}
is a basis for a topology, called metric topology.

Examples of metric spaces: [Proof not in the exam)|

(a) X any set, d(x,y) = {(1) z;‘z’
(b) X = {f:[0,1] — R | f continuous}, di(f,g) fo |f(z
g(x)|dz.
(¢) X ={f:1]0,1] = R | f continuous}, ds(f, g) \/fo |f(x x)|%dz.

Definition: subspace topology.

Let A C X be open (resp. closed). Then B C A is open (resp.
closed) in the subspace topology < it is open (resp. closed) as
a subset of X.

A function f: X — Y is continuous < for all C' C Y closed, we
have that f~1(C) is closed in X.

Let f: X — Y be a function.
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(a) Given a basis B for Y, f is continuous < f~1(B) is open
for all B € B.

(b) f: X =Y, ¢g:Y — Z continuous = go f: X — Z is
continuous.

(c) f: X =Y continuous, A € X. Then f|, is continuous with
respect to the subspace topology on A.

(d) Let f: X =Y, g: W — Z. Then f X g is continuous < f
and g are.

11. Definition: Homeomorphism.

12. Let X be a set of cardinality at least 2. Then the identity map
Id: (X, Taiscrete) — (X, Tirivial) 18 continuous but not a homeo-
morphism.

Lecture 5:

1. A topological space X is disconnected if one of the following
equivalent conditions hold:

(a) X is the union of disjoint, non-empty open sets;
(b) X is the union of disjoint, non-empty closed sets;

(c) There exists A C X, where X # A # (), which is open and
closed.

2. Definition: connected space.

3. Examples: R—{0} is disconnected, Q is disconnected, the topol-
ogy of R given by the basis {[a, )} is disconnected.

4. [a,b] is connected.
5. Definition: path connected space.

6. If X is path-connected, then it is connected.



7. Let f: X — Y be a continuous surjective map and suppose that
X is (path-)connected. Then Y is (path-)connected.

Lecture 6:

1. Definition: cut-point
2. The number of cut-points is invariant under homeomorphism.

3. Let Z = {(z,sin (1) |z >0} U{(0,z) | # € [-1,1]}. Then Z is
connected but not path-connected. [Proof not in the exam]|

4. Let P(z) = {y € X | there exists a path from x to y} (called
path-connected component of x). If P(x) N P(y) # (0, then
P(x) = P(y).

5. Definition: inverse path, connected /disconnected /path-connected
subspace.

6. A topological space is the disjoint union of its path-connected
components.

7. If A C X is a path-connected subspace, then it is contained in
a path connected component of X.

8. if f: X — Y is a continuous function , then f(P(x)) C P(f(x)).
9. If A C X is a connected subspace, then A is connected.
10. Remark: this is not true with Int(A).

11. Let A C X be closed and open, and C' C X be connected. Then
if ANC # (), then C' C A.

12. Let {C,} be a family of connected subspaces of X. If C,NCs # ()
for all @ and 3, then | C, is connected.

13. Definition: connected component C(x) of a point x.



14. C(x) is connected, closed and if C'(x) N C(y) # 0, then C(z) =
Cly).

15. Definition: neighbourhood, locally path connected topological
space.

16. Suppose that X is locally path connected. Then for each x € X,
P(z) = C(x).

17. As a corollary we get that if X is locally path connected, then
X is connected < X is path-connected.

Lecture 7:

1. Definitions: totally disconnected space, isolated point, Cantor
Set, bounded set.

2. Let C C R be the Cantor set. Then C' is non-empty, totally
disconnected, closed, without isolated points.

3. Let X C R be anon-empty, totally disconnected, closed, bounded
subset without isolated points. Then X is homeomorphic to the
Cantor set. [Not proved in the lecture]

Lecture 8:

1. Definitions: Compact, open cover, subcover.
2. Example: R is not compact.

3. Let X be a compact, non empty, topological space, f: X — R
a continuous function. Then f has a maximum.

4. The interval [a, b] is compact in R.

5. Let X a compact set and ¥ C X be a closed set. Then Y is
compact.



6. Let X be a topological space and B be a basis for the topology.
Then X is compact if and only if for every open cover {O,}
such that O, € B for all «, there exists a finite subcover.

7. Let f: X — Y be continuous and surjective, and assume that
X is compact. Then Y is compact.

8. Let X and Y be compact topological spaces. Then X x Y is
compact.

9. A subset X of R" is compact if and only if it is closed and
bounded.

Lecture 9:

1. Want a topology for infinite products X = [],.; X;. First candi-
date: choose the basis B = {O1 x---xO, x---| O; open in X;}.
However, for X = RY the basis B would make the map f: R —
RY defined as f(x) = (x,2,z,...) not continuous.

2. Definition: product topology (for arbitrary products).

3. Let Z and X, for ¢ € I, be topological spaces. For each i € I, let
fit Z — X, be a function. Then the function f: Z — [[,.; Xi
defined as f(2) = (f1(2), ..., fu(2),...) is continuous if and only
if each f; is continuous (the product [[..; X; is equipped with
the product topology).

1€l

4. Let X;, for ¢ € I be topological spaces, and let X = [],.; X; be
equipped with the product topology. Then X is compact if and
only if each X; is compact.[Proof not in the exam)|

Lecture 10:

1. Definition:Limit of a sequence, first countable space, neighbour-
hood basis, Hausdorff space, converging sequence.



10.

Non-example: Zariski topology.

Let X be a Hausdorff topological space. Then any sequence has
at most one limit.

Let X be a metric space with the metric topology. Then X is
first countable and Hausdorff.

Let X be a first countable metric space. Then for every subset
Aof X:

(a) A= {z|3{x,} with each z,, € A, such that z = lim{xz,}}.
(b) A is closed if and only if the limit of a sequence contained

in A is contained in A (in case such a limit exists).

Let X, Y be topological spaces and assume that X is first count-
able. Then f: X — Y is continuous if and only if for every
sequence {z,} in X with limit point x, f(z) is the limit of

{f(zn) -

Definition: sequentially compact space, totally bounded space,
second countable space.

Let X be a metric space. Then the following are equivalent:

(a) X is compact;

(b) X is sequentially compact;

(¢) X is complete and totally bounded.

Let X be a first countable topological space that is compact.

Then X is sequentially compact. (The proof is part of the state-
ment before)

Let X be a second countable topological space that is sequen-
tially compact. Then X is compact. (The proof is part of the
statement before)



Lecture 11:

1.

Definition: Lebesgue number, for a subset A of a metric space
X, d(z, A) = infyca{d(z, y)}.

Let X be a compact metric space. Then every open cover has
a Lebesgue number.

For a subset A of a metric space X and a point x € X it holds

(a) d(z,A) >0 and d(x, A) = 0 <=z € A.
(b) d(z, A) is 1-Lipschitz (hence continuous) in .

Definition: uniformly continuous function.

Let X,Y be compact metric spaces. Then every continuous
function f: X — Y is uniformly continuous.

Lecture 12:

. Definition: Space C'(X,Y’), equicontinuous family of functions.

[Proof not in the exam|Let X and Y be compact metric spaces.
Then a set F C C(X,Y) is compact if and only if it is closed
and equicontinuous.

[Statement not in the exam|Let f: [0,1] x R — R be a contin-
uous bounded function, and let ¢y € R. Then the system

y'(x) = f(x,y(x))
y(0) = to

has a solution y: [0,1] — R.

Definition: dense subset.

[Statement not in the exam]There exists f: [0,1] — R continu-
ous such that f/(z) does not exist for all x € [0, 1].
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Lecture 13:

1.
2.

Definition: one-point compactification.

Let X be a Hausdorff space and C' be a compact subspace of
X. Then C'is closed in X.

. Let X be a Hausdorff space and C' be a compact subspace of X.

Then for every x € X — (' there are disjoint open sets U and V
such that x € U and C C V.

Let X be a non-compact Hausdorff space and X be the one-point

compactification of X. Then X is compact and X is dense in
X.

Lecture 14:

1.

Example: stereographic projection: R" is homeomorphic to 5"
[Proof not in the exam)|

Definitions: normal space, regular space.

Let X be a compact space and Y be a hausdorff space, and let
f: X — Y be a continuous map. Then f is closed (i.e. for each
closed set C' C X, f(C) is closed in Y).

[Corollary] A continuous bijection between a compact space and
a hausdorff space is a homeomorphism.

Let X be a non-compact Hausdorff space. Then X is Hausdorff
if and only if X is locally compact. [Proof not in the exam)|

Let X a locally compact Hausdorff space, and let {U,} be a
family of open dense subsets. Then (U, is dense. [Proof not
in the exam)|
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7.

Let (X, T) be a second-countable Hausdorff space. Then there
exists a distance on X that induces the topology 7 [Proof not
in the exam].

Lecture 15:

1.

e

Let X be a compact Hausdorff space. Then X is normal (in
particular is regular).

Let X be a metric space. Then X is normal.
Definition: Quotient topology, quotient space.
Informal discussion: quotient = gluing.

Let X be a compact space, Y be a hausdorff space and let
f: X — Y be a continuous surjection. Then a set U C Y is
open in Y if and only if f~1(U) is open in X.

Lecture 16:

1.

Definition: equivalence relation, equivalence class, quotient by
an equivalence relation.

Let X, Y be topological spaces and let f: X — Y be a quotient
map. Let ~ be the equivalence relation on X defined as x ~ y

if f(z) = f(y). Then the map f: X/ — Y defined as
[z] = f(z)
is well defined and a homeomorphism.

Let X,Y be topological spaces and let ~ be an equivalence
relation on X. Let f: X — Y be a continuous map such that
whenever r ~ y we have f(x) = f(y). Then the map f: X/. —
Y defined as f([z]) is well defined and continuous.

11



4. [Statement not in the exam|Examples: [0,1],0 ~ 1 is homeo-
morphic to S, X = R x {0,1}, (z,0) ~ (x,1) if x # 0 (line
with two zeroes). Quotient is not hausdorff, contains non-closed
compact subsets, exists compact subsets whose intersection is
not compact.

5. Let X be a topological space, let A be a dense subset of X and
let Y be a Hausdorff space. Suppose that there are continuous
functions fi, fo: X — Y such that for every a € A we have

fl(a) = fQ(CL). Then f1 = fg.

6. [Statement not in the exam|Let X be a Hausdorff, path con-
nected topological space. Then X is arc connected (i.e. any two
points can be joined by an injective arc).

7. Examples: Let Q = [0,1] x [0,1]. Then the cylinder is given
by (0,1) ~ (1,%), for all ¢ € [0,1]. The Mobius strip is given
by (0,t) ~ (1,1 —t). The torus is given by (0,t) ~ (1,¢) and
(5,0) ~ (s,1). The torus is homeomorphic to S x S*.

Lecture 17:

1. The sphere S? can be described as a quotient in several ways.
Presented the following:

(a) X = D?*x{a, b}, where D?is the unit disk. Then S* = X/,
where (v,a) ~ (vy) for each v € S' (note that S! is hte
boundary of D?).

(b) X = D? and S? = X/. where (z,y) ~ (x,—y) for each
(z,y) € S".
(c) X = D? and S%? =~ X/St.

2. Definition of Klein bottle, projective plane.

3. The projective plane is homeomorphic to S?/., where x ~ —x
for all x.
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Lecture 18:

1.

Let X be a normal topological space and q: X — Y be a closed
quotient map. Then Y is normal.[Proof not in the exam]

Let X be a compact Hausdorff space, let ~ be an equivalence
relation on X and assume that R = {(z,y) | t ~y} C X x X is
closed. Then the projection map q: X — X/ is closed. [Proof
not in the exam]

[Statement not in the exam|There is an equivalence relation on
the Cantor set C such that C'/. is homeomorphic to [0, 1].

[Statement not in the exam|Let X be a compact metric space.
Then X can be realized as a quotient of the Cantor set.

[Statement not in the exam|Definition of Sierpinsky carpet.

[Statement not in the exam|There is an equivalence relation on
the Sierpinsky carpet S such that S/ is homeomorphic to the
sphere S2.

Lecture 19:
1. What is a topological invariant;
2. Definitions: loop, homotopy (of paths), linear homotopy;
3. Being homotopic is an equivalence relation.
Lecture 20:
1. Definitions: null-homotopic loop, fundamental group,
2. The fundamental group is well defined. Its trivial element is the

constant loop and the inverse of a class [a] is the class [},
where [a™1] is the path obtained reversing the orientation of a.
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3. Let X, Y be topological spaces. Assume that X = AU B, with
A, B closed, and let f: X — Y. If fj4 and f|p are continuous,
so it is f. This is still true if instead of considering 2 closed sets,
we consider finitely many.

4. Remark: The above is still true if both A and B are open or,
more general, if X is the union of arbitrarily many open. It is
not true for general A and B.

5. Let X be a topological space, and let v be a path between two
points zp and x;. Then there exists an isomorphism 3, : m1(X, zy) —

m1(X, 1), where 8, ([a]) is defined as [y~ x a x 7].

6. Corollary: if X is path connected, then for every pair xg, z; we
have that m (X, z9) = m(X,x1). In this case we can denote
(X, o) simply as m1(X).

7. Remark: the isomorphism 3, depends on the choice of +.
8. [Peano Curve| There exists a continuous surjective map [0, 1] —

[0, 1] x [0, 1].[Statement not in the exam]

Lecture 21:

1. Let X be a topological space and suppose that X can be written
as X = |JU,, where each U, is a path-connected open subset of
X. Suppose, moreover, that there exists xy such that xy € U,,
for every o and that U, N Up is path-connected for every o and
. Then every loop at x( is homotopic to a concatenations of
loops such that every loop in the concatenation is contained is
some U,,.

2. As a corollary, we obtain that m1(S") = {1}, for n > 1.

3. [Proof next lecture] m (S') & Z.
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4. [Brouwer fixed point Theorem] Let f: D* — D? be any contin-

uous map. Then f has a fixed point, that is, there exists x € D?
such that f(z) = z.[Statement not in the exam]

Lecture 22:

1.

The fundamental group of the circle S! is isomorphic to the
integers, and it is generated by the class of the loop w(t) =
(cos(2mt), sin(27t)).

Definition: Covering, evenly covered neighbourhood, covering
space, covering map, lift(ing) of a map f,

Example: the quotient map S? — RP? is a covering.

Let p: X = X be a cover, let zy € X be a point, and let
xg = p(Zp). Then we have:

(a) [Unique lift of paths] For every path f: [0,1] — X with
f(0) = xg, there exists a unique lift f with f(zy) = xo.

(b) [Unique lift of homotopies| For every homotopy F': [0, 1] x
0,1] = X with F'(0,0) = o, there exists a unique homo-
topy F': [0,1] x [0,1] — X with F(O 0) = .

Let p: X = Xbea cover, assume that X is path connected,
and let 7y € X and z¢ = p(7p). Let o: m (X, 29) — p~1(x0) be
the map defined as o([y]) = (1), where 7 is the unique lift of

v such that 7(0) = z5. Then o is well-defined and surjective.
Moreover, if m (X, zy) = {1}, it is also injective.

As a corollary we obtain 7 (RP?) 2 Z/27Z.

Lecture 23:

1.

[Proof as exercise| Let X, Y be topological spaces and let f: X —
Y be a continuous map. Assume that f(xg) = yo. Then the

15



map f.: m(X,z9) = m(Y,y0) defined as fi([7]) = [f o] is
well-defined and a group homeomorphism.

2. As a corollary we obtain that if X and Y are path-connected
and homeomorphic, then m(X) = m(Y).

3. Definition: homotopy between continuous maps (from general
topological spaces), homotopy equivalence between topological
spaces.

4. Being homotopic equivalent is an equivalence relation between
topological spaces.

5. Examples: R" is homotopic equivalent to a point, the Mobius

strip is homotopic equivalent to S*.

Lecture 24:

1. R? is not homeomorphic to R for any n > 2. (Note that we
already know that R? is not homeomorphic to R).

2. We have: R — {0} ~ S*! where ~ denotes homotopy equiva-
lence.

3. Let f,g: X — Y be two homotopic maps, and let g € X. Then
there is a path v in Y from f(x¢) to g(zo) such that 5,09, = f.
(recall that 3,([a]) = [y * a *~v~!]). This amounts to say that
there exists v such that the following diagram commutes.

(Y, f(20))

%

7T1(X, .CU()) ﬁw

\f‘*

m1(Y, g(0))




4. As a corollary we obtain that if f: X — Y is a homotopy equiv-
alence and zy € X, then f,: m (X, z9) — m(Y, f(zg)) is an
isomorphism.

Lecture 25:

1. Definition: free group, reduced word, free product of groups.

2. [Proof not in the exam|The free product *G,, is a group, and
each G, is (naturally identified with) a subgroup.

3. Definition: free group.

4. [Proof not in the exam|Let {G,} be a family of groups, and H be
a group. For each a, let ¢,: G, — H be a homomorphism. Then
there exists a unique map ¢: * G, — H such that ¢q, = 1),

5. [Proof not in the exam|Let G be a group and A C G. Then
there exist a unique minimal normal subgroup (with respect to
inclusion) containing A, denoted by ((A)). Moreover

=1

((A)) = {Hgia?[gil | gi € Ga; € A}.

6. Definition: presentation of a group (denoted (S | R)), relators.

7. [Proof not in the exam|Let G = (S | R), N = ((R)) < Fg and
let ¢: Fg — H be a homomorphism. If for all » € R we have
that f(r) = Id, then ¢: G — H given by ¢(gN) = ¢(g) is a
well-defined homomorphism.

8. [Van Kampen Theorem| [Proof not in the exam|Let X be a
topological space, A, B C X be open path-connected, and let
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x9 € AN B. Let

1g4: A= X
ig: B—> X
Z'A7B:AﬂB—>B
Z'BA:AQB—)A

be the inclusions. Let

¢ = o({(ia), (ip)+}): m1(A, o) * T (B, x0) — (X, 20).

Then ¢ is surjective and the Kernel of ¢ is
({(iap)s(9) - (ip.a)(97") | g € m(AN B,2o) })).

9. [Corollary] If A and B are simply connected, then so it is X.
10. m(S?) = {1}.
11. Definition: Rose R,,.

12. m(R,) = F,, where F), is the free group on n generators.

Lecture 26:

[Statement not in the exam]| Proof of Van Kampen Theorem

Lecture 27:

[Statement not in the exam| Covering Theory.
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